Homework \#8 (10 points) - Show all work on the following problems:

Problem 1 (2.5 points): A point charge q moves in a circle of radius a in the $x-y$ plane (centered at the origin) with constant angular velocity ω. If the charge is at $(x, y)=(a, 0)$ at $t=0$, find the Liénard-Wiechert scalar and vector potentials for points along the z-axis.

Problem 2 (2.5 points): Find the total electric flux $\oint \vec{E} \cdot \overrightarrow{d a}$ through the surface of a sphere centered around a point charge moving with constant velocity. Hint: The answer is the same as for a stationary point charge - but the math is a little harder.

Problem 3 (2.5 points): Check that the retarded potentials of an oscillating dipole satisfy the Lorenz gauge condition $\nabla \cdot \vec{A}=-\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}$. Do not assume $r \gg c / \omega$.

Problem 4 (2.5 points): Express the scalar and vector potentials, the electric and magnetic fields, and the time-averaged Poynting flux (Eqs. 11.14, 11.17, 11.18, 11.19, 11.21) for electric dipole radiation in a coordinate-independent form, using $p_{0} \cos \theta=\overrightarrow{p_{0}} \cdot \hat{r}$.

